Р. Марч Физика для поэтов

Закон Всемирного тяготения.

Лучший способ понять значение закона Всемирного тяготения – это сначала сформулировать его, а затем проанализировать во всех деталях. Говоря словами Ньютона, «все тела притягиваются друг к другу с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними». На математическом языке это записывается так:

, (4-1)

где M и m– массы упомянутых объектов, R – расстояние между ними1, а γ –универсальная постоянная, которая определяет величину силы взаимодействия. Начало цепочки рассуждений, ведущей к этому закону, было очерчено в конце 3 главы: чтобы объяснить падение тел, Ньютон был вынужден с самого начала постулировать, что сила пропорциональна массе падающего тела. Каким образом могла создаваться такая сила? После того как Галилей убедительно доказал, что разные падающие тела движутся одинаково в разреженных средах (и тем более в вакууме), а также в воздухе, Ньютон едва ли мог вернуться к прежним идеям и приписать эту особенность падения действию среды. Таким образом, мысль Ньютона неизбежно направлялась в сторону концепции действия на расстоянии («дальнодействия»), которое происходит между телами, не касающимися друг друга. Для большей части его научной аудитории, да и для самого Ньютона, это была наиболее «подозрительная» черта закона гравитации. Но, выстраивая свою систему на основе достижений Галилея, он вряд ли имел выбор.

Следующей проблемой для него было раскрытие понятия «другое тело» в третьем законе механики. И снова тут наиболее логичным кандидатом была сама Земля: как только мы представляем себе нашу Землю шаром, вращающимся вокруг своей оси, у которого направление к центру всегда чудесным образом означает «вниз», этот выбор становится очевидным.

Здесь в рассуждения решительно вмешивается третий закон. Он не делает различия между землёй и падающим яблоком. На каждого из них действует одна и та же сила. Только огромной разницей масс можно объяснить тот факт, что яблоко падает, а движение Земли неощутимо. Так зачем же различать тела в законе гравитации? Ведь если сила должна быть пропорциональной массе яблока, то почему она не пропорциональна также и массе Земли?

Это был не столько вопрос логической необходимости, сколько вопрос стиля. Универсальные законы движения, которые применимы ко всем объектам и всем силам, не различают участников взаимодействия, которое приводит к возникновению силы. Нет, однако, и никакой логической причины предполагать, почему какая-нибудь отдельная сила не может различить участников. Например, когда пружина толкает шар, характеристики пружины, а не шара, определяют силу между ними, и хотя на каждого партнёра действует одна и та же сила, их индивидуальные реакции на эту силу определяются исключительно массами. Почему же подобное различие не может проявиться в законе гравитации? Ньютон, однако, избрал другой путь: сохранить универсальность, красоту и совершенную симметрию своей системы путём введения в свою теорию массы Земли, не измеренную ещё в то время.

Кроме того, теория, игнорирующая массу Земли, была бы неэстетичной. Если сила гравитации зависит только от массы конкретного падающего тела, то сама Земля будет играть пассивную роль, вряд ли ей подходящую. Это едва ли удачное решение, когда требуется выбирать активного и пассивного партнёров взаимодействия.

Здесь снова, как много раз прежде и после, поиск гармонии и красоты являлся ведущей силой при выборе гипотезы. Но одного эстетического рассмотрения не достаточно, теория должна также объяснять факты. Числитель уравнения 4-1, произведение M m, теперь полностью определён, потому что единственная возможность для силы в одно и тоже время быть пропорциональной массе Земли и массе падающего тела – это быть пропорциональной их произведению.

Конечно, ни один из приведенных аргументов не доказывает утверждение Ньютона о том, что эта сила не ограничена Землёй, а присуща всем телам, включая Солнце и планеты, и что она уменьшается как квадрат расстояния между объектами. Чтобы доказать это, Ньютон использовал подробные законы планетарного движения, открытые поколением раньше Иоганом Кеплером. История открытия этих законов является одной из самых необычных в науке.

Паршивый пёс и человек с золотым носом.

Иоган Кеплер родился на 8 лет позже Галилея в малоизвестном городке Южной Германии Вейльдерштадте и был сыном солдата удачи и дочери хозяина гостиницы. Получить образование рождённому в такой семье оказалось возможным лишь благодаря доброте герцога Вюртенбергского, который обеспечил обучение малоимущих студентов, что было необычной практикой в те времена.

Профессорá университета Тюбингена разглядели в Кеплере натуру страстную и прямолинейную, плохо подходящую на роль священнослужителя в эпоху религиозной борьбы, и всячески поощряли его интерес к астрономии и математике. Незадолго до получения им сана священника, освободилось место учителя математики при лютеранской школе Граца в католической Австрии, и Кеплера убедили занять это место. Оплата была нищенской, но и обязанности небольшие, т.к. число учеников, интересовавшихся математикой, было незначительным. Таким образом, он мог заниматься своими астрономическими исследованиями, и его публикации на эту тему принесли ему известность в центральной Европе.

Вознаграждённый известностью, Кеплер, однако, никогда не знал процветания и душевного спокойствия. Измученный действительными и воображаемыми болезнями, бедностью и религиозными гонениями, он жил, всегда изворотливо хитря, стараясь быть настороже, чтобы «не пустить волка в двери, а демонов в голову». И выбрал для себя метафорический образ «паршивого пса».

Переломное событие в жизни Кеплера произошло в 1600 году, когда окончательный запрет на проживание протестантов в Австрии вынудил его сбежать из Граца в Прагу, где ему предложили убежище в виде должности помощника Тихо Браге, выдающегося астронома своего времени. Тихо покинул родную Данию по совсем другой причине.

Происхождение Тихо было настолько же роскошным, насколько оно было убогим у Кеплера. Принадлежа к одной из самых знатных семей датской знати, он был, по семейной традиции, предназначен к королевской службе. Но случай сбил его, 14-летнего копенгагенского студента, с этого пути. Это было полное затмение солнца, – зрелище всегда ужасающее, внушающее благоговейный трепет и страх любому человеку. Но более всего Тихо поразил тот факт, что затмение было предсказано астрономами с точностью, казавшейся удивительной. Тихо решил, что профессии, способной на такой подвиг, стоит посвятить свою жизнь. Формально готовясь к юридической карьере и скрыто изучая астрономию, Тихо вскоре обнаружил, что точность, которая так привлекла его к астрономии, оказалась очень далека от желаемой. В частности, таблицам планетарного движения можно было доверять только в течение нескольких десятилетий или около того. После этого срока они давали ошибки на дни и даже недели. Он правильно понял, насколько остро необходимы новые измерительные инструменты, и стал прочёсывать северную Европу в поисках мастеров, которые могли бы их изготовить.

Большой прорыв в его исследованиях произошёл в 1572 году, когда ему было 25 лет, а в северном небе взорвалась звезда, которую сегодня назвали бы сверхновой. Со своими достаточно совершенными инструментами, он оказался единственным астрономом, способным показать, что этот яркий объект находился вне пределов земной атмосферы и даже за пределами нашей планетной системы, в области предположительно неподвижных звёзд. Это было сокрушительным ударом по схоластической космологии. Это открытие сразу сделало Тихо Браге одним из самых знаменитых астрономов Европы.

Никогда прежде Дания не рождала ученого с такой известностью, и король Дании Фредерик II не захотел уступать Браге более культурным странам на юге Европы. Он сделал Тихо подарок, беспрецедентный в истории науки: подарил ему остров Хвин как место для его обсерватории, и обеспечил ему гранты государственного казначейства для того, чтобы поддержать обсерваторию и заполнить её самыми лучшими инструментами, которые только могли изготовить искусные руки ремесленников того времени.

Это была «Большая наука» даже по современным стандартам. Тихо возглавлял научный центр, большой штат мастеров и студентов с комплектом оборудования, позволявшим одновременно производить четыре независимых наблюдения с тем, чтобы полностью исключить человеческую ошибку. Тихо и его студенты повысили точность астрономических наблюдений, застывшую на 10 угловых минутах в течение 15 столетий, в 10 раз. Всё это было сделано буквально невооружённым глазом, т.к. астрономический телескоп появился только через два поколения.

Но Тихо был далеко не героем для многих своих соотечественников. Яркий представитель своего класса, наделённый сполна высокомерием, он критиковал окружающих за их поглощённость охотой, обжорством, похотью и дуэльными поединками, хотя сам Браге потерял в юности бόльшую часть носа в дуэли и позже заменил его искусно изготовленным протезом из сплава золота и серебра. Он ещё более шокировал своих современников, женившись на дочери крестьянина в одном из своих имений. По датским законам того времени такой мезальянс делал его детей незаконнорождёнными. Приемник Фредерика, Кристиан IV не стал терпеть строптивого астронома. Он нуждался в средствах из-за военных неудач, и под предлогом взыскания с Тихо за чрезмерную эксплуатацию крестьян с острова Хвин, лишил обсерваторию большей части её дохода. Разгневанный Тихо покинул Данию, чтобы поступить на службу к Рудольфу II, императору Священной Римской империи, который сам был астрономом-любителем.

Тихо перенёс в Прагу свои инструменты и драгоценные таблицы наблюдений. Он надеялся увеличить свою славу новой, более точной версией геоцентрической космологии Птолемея, которая существовала уже 14 столетий. Кеплер был нанят, чтобы выполнить трудные вычисления, необходимые для завершения задачи. Тихо был настолько уверен в своей способности убеждения, что не придал значения тому, что его новый помощник был убеждённым сторонником учения Коперника.

Две великие конкурирующие космологии.

Движения планет были загадкой с самого рождения астрономии, которая во многих цивилизациях возникла ещё до изобретения письменности. Кажется, что звёзды согласованно вращаются вокруг Земли, как будто прикованные к необъятной вращающейся сфере. Солнце и Луна совершают круговое движение через звёздную сферу, повторяя его через год (Солнце) и через месяц (Луна).

Однако планеты не похожи друг на друга, их движения индивидуальны. Меркурий и Венера пересекают солнечный диск, следуя за ним в своём путешествии по небу. Марс, Юпитер и Сатурн движутся по предсказуемым траекториям, но их перемещение прерывисто. Время от времени они, кажется, начинают двигаться в обратном направлении в течение нескольких месяцев. Три остающиеся планеты Солнечной системы не были обнаружены до эры телескопов.

Мысль о том, что Земля сама является планетой и подобно другим вращается вокруг Солнца, так же стара, как и сама астрономия. Эта точка зрения сразу предлагает готовое объяснение упомянутым наблюдениям. Орбиты Меркурия и Венеры лежат внутри нашей орбиты, поэтому мы никогда не видим их далеко от Солнца. Марс, Юпитер и Сатурн находятся вне нашей орбиты и движутся медленнее, чем Земля. Когда Земля обгоняет одного их этих медленных путешественников, с Земли будет казаться, что он движется в обратном направлении. Эта теория была впервые задокументирована Аристархом Самосским в IV веке до новой эры.

Птолемей признавал достоинства системы Аристарха, но представление о том, что Земля движется без нашего понимания этого движения, казалась вызовом и здравому смыслу и физике того времени. Он развил весьма точную схему, в которой планеты двигались по эпициклам, окружностям, центры которые, в свою очередь, двигались по другим окружностям. Эта система была усовершенствована великими арабскими астрономами. Окончательное улучшение было связано с именем Тихо Браге, который использовал некоторые достоинства гелиоцентрической системы, поместив центры всех планетарных эпициклов на Солнце, как показано на рис. 4-1.

Важно понять, что спор между гелиоцентрической и геоцентрической системами никогда не мог быть решён астрономическими наблюдениями, которые показывают только то, где планеты видятся наблюдателю с Земли. В действительности, схема Птолемея давала столь же точную картину планетарного движения, как и схема Коперника, и разве что была немного более сложной. Коперник, в свою очередь, был вынужден прибегнуть к малым эпициклам, т.к. орбиты планет вокруг Солнца не являются правильными окружностями. Если мы будем использовать рисунок 4-1 как чертёж Солнечной системы, то он одинаково подошёл бы и для коперниканской схемы. Единственным различием двух систем был бы выбор тела, которое надо остановить, Солнце или Землю. Таким образом, выбор сводился к вопросу: разумно ли считать Землю движущейся? А это вопрос физики, а не астрономии. Птолемей, Тихо и Кеплер понимали это очень хорошо, и каждый в своём решении опирался на собственную физическую интуицию.

Движение планет по Кеплеру.

Тихо прожил всего один год после приезда Кеплера в Прагу. Кеплер унаследовал и работу, и записи Тихо Браге, хотя права на последние оспаривались родственниками Тихо. Анализ астрономических данных из записей Тихо Браге Кеплером был подвигом силы и умения (tour de force), который выглядит впечатляюще даже с высот компьютерной эры. Он обнаруживает такое понимание значимости и пределов точных измерений, которое на века опередило своё время.

Труды Кеплера отражены в двух его великих произведениях Astronomia Nova (Новая астрономия) и Harmonice Mundi (Гармония Вселенной). Уникальность этих трудов в анналах науки заключается в том, что они представляют не только выводы автора, но и полное описание извилистого пути к ним, наполненного фальстартами, тупиками и ошибочными гипотезами, которые преодолевались ценой трудоёмких ручных расчётов в течение месяцев. Записи перемежаются поэмами и фрагментами стихов, в которых автор безжалостно бичует себя за временные неудачи и упоённо ликует при достижении триумфальных результатов.

Но, главное, Кеплер обнаруживает мистическое прозрение, которое направляло его к этому рационалистическому триумфу. Он поместил Солнце в центр Вселенной, из-за того, что оно, как источник света и жизни, ближе к Богу, чем низменная Земля, и потому больше заслуживает этой чести. Он продолжал непрестанно следить за орбитами планет, будучи уверен в том, что однажды, полностью определённые, они дадут божественный урок стереометрии и откроют законы музыкальной гармонии. В этой своей главной страсти жизни Кеплер потерпел поражение. Но на пути к своей личной трагедии, он оставил нам три закона, которые вынесли проверку временем и живут до сегодняшнего дня.

  1. Планеты движутся по эллипсам, в одном фокусе которых находится Солнце. Рисунок 4-2 объясняет термины, используемые для описания эллипса и его фокусов.

  2. Площадь, «заметаемая» радиус-вектором, проведённым от Солнца к планете, будет одинакова для одинаковых временных интервалов. Каждая планета движется быстрее, когда она находится вблизи Солнца, и медленнее при большем расстоянии от него. Например, если самая отдалённая точка орбиты вдвое дальше от Солнца, чем ближайшая, то скорость планеты в первой точке вдвое меньше, чем скорость во второй.

  3. Квадрат периода обращения каждой планеты пропорционален кубу главной оси её орбиты (квадрат планетного года пропорционален кубу главной оси эллипса). Рисунок 4-2 показывает главную ось, как наибольший размер эллипса. Закон утверждает, что далёкие от Солнца планеты движутся по своим орбитам медленнее, чем внутренние планеты, и, таким образом, длина года возрастает быстрее, чем размер их орбиты.

Хотя Кеплер описывает эллиптические орбиты планет, они очень близки к круговым. Законы Кеплера основаны на наблюдении почти незаметных отклонений от простого поведения планет на идеальных круговых орбитах. Однако эти отклонения очень важны, потому что именно они позволили Ньютону продемонстрировать обратную пропорциональность силы гравитации от квадрата расстояния.

  1. Техническое задание предмет контракта: Поставка книжной продукции для библиотек Управления культуры свао г. Москвы; Место поставки: 127254 г. Москва ул. Руставели, д. 13/12, кор. 2

    Техническое задание
    Поставка товара производится для осуществления комплектования фонда государственных публичных библиотек Управления культуры СВАО г.Москвы за счёт субсидий из федерального бюджета.
  2. Арнольд И. В. Стилистика. Современный английский язык: Учебник для вузов. 4-е изд., испр и доп

    Список учебников
    Основная задача книги — научить сознательно подходить к художественному тексту как целому, рассматривая его в единстве формы и идейного содержания. Все аспекты стилистики, изучаемые современными учеными, нашли свое отражение в данной книге.
  3. Джеймс Фенимор Купер Зверобой, или Первая тропа войны

    Документ
    Фенимор Купер - один из первых американских писателей, завоевавших славу и признание читателей в нашей стране. Наследие Купера велико и многообразно: более тридцати романов, исторические сочинения, публицистические памфлеты.
  4. Удобное справочное пособие для студентов гуманитарных вузов и всех любителей кино, быстрый поиск любой информации (режиссёр, актёры, второе или третье название фильма, награды различных фестивалей и жюри), неожиданные открытия

    Документ
    Удобное справочное пособие для студентов гуманитарных ВУЗов и всех любителей кино, быстрый поиск любой информации (режиссёр, актёры, второе или третье название фильма, награды различных фестивалей и жюри), неожиданные открытия.
  5. Учебное пособие (издание второе, исправленное и дополненное) Для студентов очного и заочного отделений (специальность 021400 «Тележурналистика»)

    Учебное пособие
    КИНОИСКУССТВО, это вид художественного творчества, которое является синтезом литературы, изобразительного искусства, театра и музыки. Технологические истоки указывают на две принципиальные составляющие кинематографа: фотография (фиксация
  6. Представлены программа дисциплины, краткий конспект лекций, задания для семинарских занятий, список рекомендуемых источников для изучения дисциплины, тематика контрольных и контролируемых самостоятельных работ, вопросы и тесты для самоконтроля. Удк

    Программа дисциплины
    Медведев В.Ф., член-корр. НАНБ, доктор экономических наук, профессор, директор Центра мировой экономики и международных экономических отношений Института экономики НАН Беларуси
  7. Пол Фейерабенд

    Документ
    "Против методологического принуждения"В кн.: Фейерабенд П. Избранные труды по методологии науки. М., 1986. с.125-467 Feyerabend P.K. Against Method.
  8. Удобное справочное пособие для студентов гуманитарных вузов и всех любителей кино, быстрый поиск любой информации (режиссёр, актёры, второе или третье название фильма, награды различных фестивалей и жюри), неожиданные

    Документ
    Абонент временно недоступен. Росс., 2009. Мелодр. Реж. Марк Горобец. В р: Дина Корзун, Эвклид Кюрдзидис, Павел Новиков, Альберт Филозов, Римма Зюбина, Ирина Новак.
  9. Российский комитет программы юнеско «Информация для всех», Бюро юнеско в Москве (1)

    Документ
    Анонсы содержания номеров журнала «Медиаобразование» публикуются на российском образовательном портале «Учеба» www.ucheba.com и рассылаются администрацией данного портала всем желающим по электронной почте.

Другие похожие документы..