Философские вопросы естественных гуманитарных и технических наук

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

А.А. Корниенко, И.Б. Ардашкин, А.Ю. Чмыхало

ФИЛОСОФСКИЕ ВОПРОСЫ ЕСТЕСТВЕННЫХ ГУМАНИТАРНЫХ И ТЕХНИЧЕСКИХ НАУК

Учебное пособие

Томск 2007

ББК Ю25 Я 73

А.А. Корниенко, И.Б. Ардашкин, А.Ю. Чмыхало. Философия науки. Томск: Изд. ТПУ, 2007. - 164 с.

Эта учебное пособие состоит из пяти глав, посвященных существующей интерпретации в литературе основных моментов философии науки. Учебное пособие подготовлено на кафедре философии ТПУ и предназначено для магистров, обучающихся по всем специальностям. Учебное пособие подготовлено в соответствии с учебной программой.

Рецензенты:

Коробейникова Л.А. – проф., д.ф.н., профессор кафедры

культурологии ТГУ

Петрова Г.И. – проф., д.ф.н., зав. кафедрой философии

ТГУ

© Томский политехнический университет, 2007

СОДЕРЖАНИЕ

Предисловие

Раздел 1. Современные проблемы науки

1.1. Особенности современного развития науки и ее роль в развитии современной цивилизации;

1.2. Интеграционные тенденции современного развития науки.

Раздел 2.Виды наук.

Раздел 3.Уровни научного познания.

Раздел 4. Процесс формирования научного знания.

4.1.Научная проблема;

4.2. Научная гипотеза;

4.3. Научный факт и познание;

4.4. Научная теория;

4.5. Практическое использование научного знания.

Раздел 5. Особенность современных философских представлений об основаниях науки.

4

6

6

18

29

52

73

73

92

107

126

150

ПРЕДИСЛОВИЕ

Традиция философского осмысления науки нашла в ХХ веке свое логическое оформление в становлении особой философской дисциплины – философии науки. Большой вклад в дело становления данной дисциплины внесли не только крупнейшие отечественные и зарубежные философы, такие, как К. Поппер, И. Лакатос, Т. Кун, П. Фейерабенд, Ст. Тулмин, П.В. Копнин, Б.М. Кедров, В.С. Швырев, В.С. Степин и др., но и ученые – представители естественнонаучных дисциплин, чьи исследования в значительной степени повлияли на рост интереса к науке, научной деятельности, обусловили желание реконструировать логику ее развития со стороны философов. Среди этой когорты ученых можно упомянуть имена: А. Эйнштейна, Н. Бора, В. Гейзенберга, Л. де Бройля, И.Р. Пригожина, Г. Хакена, П.Л. Капицы и многих других.

В рамках философии науки рассматривается целый комплекс вопросов, связанных с процессом развития научного знания, с попыткой проанализировать и реконструировать логику научного познания, движения к научному открытию.

В настоящем пособии нашли свое отражение некоторые из наиболее основных и важных аспектов, характерных для современной философии науки. В содержательном плане пособие представляет собой следующее:

В первом разделе уделено внимание характеристике современного состояния науки, описанию проблем, на решение которых направлены основные усилия научного сообщества, рассматриваются особенности развития науки, и раскрывается ее роль в развитии современной цивилизации.

Во втором разделе пособия уделено внимание рассмотрению одной из характерных особенностей развития науки – дифференциации научного знания, проявляющейся в форме становления новых научных дисциплин. В этом разделе представлен целый ряд возможных классификаций науки и их анализ.

В третьем разделе анализируются особенности двух уровней научного познания – эмпирического и теоретического, их структура и специфика формирования.

Четвертый раздел пособия посвящен анализу процесса формирования научного знания через рассмотрение таких его аспектов, как формирование научной проблемы и ее влияние в становлении научного знания, гипотеза и ее роль в научном познании, научный факт, научная теория, взаимосвязь теории и практики, возможности практического использования научного знания, взаимосвязь науки и техники.

Пятый раздел рассматривает современные философские представления на характер и содержание научного познания. В разделе сделан акцент на два важнейших момента научного познания, играющих большое знание в современной философии научного познания: фактор иррациональности как основание инновационного творчества и аспект контекстуального обоснования познания.

Пособие ориентировано на существующий образовательных стандарт и предназначено для широкого круга читателей. Авторы пытались не только осветить вышеобозначенный круг проблем по философии науки, но и представить, как читатель сможет применить эти знания на практике, ибо вопросы, рассматриваемые в настоящем пособии, играют определяющую роль в развитии научного творчества.

Раздел 1. Современные проблемы науки

    1. Особенности современного развития науки и ее роль в развитии современной цивилизации.

Цикличность развития науки. Анализируя развитие человечества за последние полстолетия, множество исследователей отмечает глубокие качественные изменения современного общества и условий его существования, резко отличающих современность от предыдущих исторических эпох.

Установление этой новой качественной стадии в развитии человечества привело к формулированию целого ряда понятий, которые применяются для его характеристики: постиндустриальное общество, информационное общество, техногенная цивилизация и др. Эти понятия отражают глобальные количественные и качественные изменения всех сфер жизни общества и его структуры, произошедшие за указанный период. Они, в свою очередь, во многом связаны с ускорением темпов развития науки, изменением ее функций и роли в обществе.

В работах целого ряда исследователей, например, Н.Д. Кондратьева, А.Л. Чижевского и др. отмечался неравномерный, циклический процесс роста научных открытий и изобретений, а в работе русского философа И.И. Лапшина «Философия изобретения и изобретение в философии» (1921) было сформулировано утверждение об их ускоренном росте.

Количественный анализ темпов развития науки показывает, что за каждые 15 лет объем научной продукции возрастает в е раз, где е =2,72 – основание натуральных логарифмов. Это утверждение составляет сущность закономерности экспоненциального развития науки. Исходя из нее, можно сделать вывод о том, что за каждые 60 лет научная продукция увеличивается приблизительно в 50 раз, а за последние 30 лет ХХ века создано научной продукции приблизительно в 6,4 раза больше, чем за всю предыдущую историю человечества.

Большинство стран мира активно вкладывают финансовые, материальные и иные средства в развитие своего кадрового научно-технического потенциала. С середины 90-х гг. в европейских и азиатских странах быстро увеличивалось число научных степеней в области естественных и технических дисциплин. В Китае, Индии, Японии, Южной Корее, Сингапуре и Тайване численность имеющих первую университетскую научную степень за период с 1975 по 1995 гг. удвоилась, а специалистов технических наук утроилась. По данным на 1993 г. Япония имела 80 ученых и инженеров на 10 тыс. работающих, США - 74.

Экспоненциальное развитие науки не может являться бесконечным. Рост числа научных публикаций ведет к падению их качества, уменьшению количества по-настоящему ценной научной информации. Очевидно, что резервом экспоненциального роста науки является не экстенсивное увеличение числа научных сотрудников и числа производимых ими научных публикаций, а привлечение прогрессивных методов и технологий исследования, повышающих качество научной работы.

Наука и технология: особенности взаимодействия и совместного развития. Роль технологии в современной цивилизации.

Технология – это организация естественных процессов, направленная на создание искусственных объектов. В развитии технологии явно просматриваются крупные всплески.

Как уже отмечалось выше, целым рядом исследователей было установлено существование множества циклических процессов, например, экономических, солнечной активности и др., имеющих различную временную продолжительность. Среди указанного ряда ученых выделяется имя русского экономиста Н.Д. Кондратьева (1892-1938). Рассматривая статистику экономической конъюнктуры, начиная с конца ХVIII в., он установил существование циклов в ее развитии продолжительностью 48-55 лет. Анализ данных позволил ему установить четыре эмпирические правильности в развитии больших экономических циклов (циклов экономической конъюнктуры). Выведенная им первая эмпирическая правильность непосредственно затрагивает вопрос о закономерности в развитии технологии и науки в целом: «перед началом и в начале повышательной волны каждого большого цикла наблюдаются глубокие изменения в условиях экономической жизни общества. Эти изменения выражаются в значительных изменениях техники (чему предшествуют, в свою очередь, значительные технические открытия и изобретения), в вовлечении в мировые экономические связи новых стран…»1.

В работе Н.Д. Кондратьева хронологические рамки, последнего из обозначенных им циклов, соответствуют: повышательная волна III-го цикла с периода 1891-1896гг. до периода 1914-1920гг.- вероятная понижательная волна III-го цикла с периода 1914-1920гг. Опираясь на эти данные можно установить, что начало следующей повышательной волны падает приблизительно на время второй мировой войны и на послевоенные годы до конца 1960-х годов.

Действительно, все новые технологии, которые определяют «технологический портрет» конца ХХ века, родились почти одновременно в период с конца 1930-х по конец 50-х годов. Эти технологии основывались на всего нескольких открытиях. В одной из своих статей Нобелевский лауреат по физике Ж. Алферов2 отметил всего три, сугубо экспериментальных открытия, основанных на квантовой теории, которые не только определили научно-технический прогресс во второй половине ХХ века, по-новому объяснив многие вещи в физике, но и привели к масштабным социальным изменениям и во многом предопределили современное развитие как передовых стран, так и практически всего населения земного шара. Это:

1) Открытие деления урана под воздействием нейтронного облучения, сделанное О. Ганом и Ф. Штрассманом в 1938 г.;

2) Создание транзистора, осуществленное американскими физиками Д. Бардиным, У. Браттейном, У. Шокли в лаборатории компании «Белл телефон»;

3) открытие лазерно-мазерного принципа. Оно было сделано практически одновременно в 1954-1955гг. Ч. Таунсоном в США и Н.Г. Басовым и А.М. Прохоровым в Физическом институте АН СССР.

Кроме того, в это время появились ЭВМ, микроэлектроника, интегрально-групповой и планарный принципы синтеза, на которых основана микроэлектроника, ядерная энергетика, расшифровка генетического кода, первая искусственная белковая структура. В этот же период были разработаны принципы системного программирования, начаты разработки светопроводящих линий связи, начато освоение космического пространства и, тем самым, заложены основы будущей космической технологии.

На период новой понижательной волны, выпавшей на время с конца 60-х по конец 80-х – начало 90-х годов ХХ века приходится рождение прежде всего трех новых технологий: микропроцессорной, космической и генной, или генной инженерии, которые нашли свое дальнейшее развитие в последующие годы. С их совершенствованием, по всей видимости, связано дальнейшее развитие науки в ближайшие годы начала ХХI века. Все эти технологии являются совершенно различными по своему физическому содержанию.

Микропроцессорная технология имеет много назначений: создание персональных электронных партнеров для каждого человека, интеллектуализация всей техносферы, усиление и защита функций организма с помощью персональных медико-кибернетических устройств, в т.ч. вживляемых в организм.

Космическая технология, которая, в отличие от микропроцессорной, развивается относительно медленными темпами (что связано с более крупными финансовыми, материальными, интеллектуальными и т.д. затратами), имеет огромный потенциал в различных измерениях: она дополняет земную технологию, обещает в будущем разгрузить планету от нежелательных производств и раздвинуть границы обитания человечества далеко за пределы его эволюционной родины – планеты Земля и Солнечной системы.

Генная инженерия и, более широко, генная технология или биотехнология, имеет цель усовершенствовать биологию самого человека, обогатить биосферу новыми полезными видами, служит в качестве инструмента в производстве продуктов питания и небиологических изделий и др. Биотехнологическим способом производят генно-инженерные белки (интерфероны, инсулин, вакцины против гепатита и др.), ферменты для фармацевтической промышленности, диагностических средств для клинических исследований (тест-системы на наркотики, лекарства, гормоны и т.д.), витамины, биоразлагаемые пластмассы, антибиотики, биосовместимые материалы и др. Особая роль отводится сельскохозяйственной биотехнологии – это создание и культивация трансгенных растений, микробиологический синтез средств защиты растений, производство кормов и ферментов для кормопроизводства.

Все три технологии, зародившиеся в 70-е годы ХХ века, непосредственно связаны с глобальными условиями существования и эволюции человеческой популяции. Эти инновации явились одними из самых радикальных в истории человечества, ибо все предыдущие, такие, как огонь, каменные орудия, язык, письменность, электричество и т.д., не затрагивали ни природные возможности интеллекта человека, ни генетических основ биологической жизни, ни ареала ее распространения.

Задумываясь о перспективах эволюции технологий, на первый план выходит проблема, важность которой со всей остротой мир осознал в те же 70-80-е годы ХХ века – проблема взаимодействия техносферы с природной средой или проблема экологии.

Со времени выделения человека из животного мира он стал создавать свой собственный мир, сосуществующий с естественным миром живой и неживой природы. Технология, как инструмент создания искусственного мира, неизбежно оказывает экологическое давление на естественную среду обитания. Это давление может стать опасным, когда его интенсивность достигнет критического уровня, т.е. превысит уровень восстановительного потенциала природы. Особенно активно восстановительный потенциал природы подавляется в процессе урбанизации, интегрирующей почти все современные технологии. Урбанизация, формируя города, мегаполисы, агломерации городов-гигантов - территории почти сплошной урбанизации, подавляет естественный восстанавливающий потенциал природы. Земные насаждения и домашние растения не могут полностью восполнить его и радикально изменить картину. На рубеже ХХ-ХХI веков уже порядка четверти населения планеты проживает в мегаполисах.

С точки зрения глобальной экологии и дальнейшего развития технологии науки, такая концентрация населения имеет не только отрицательные последствия, но и играет роль положительного фактора, ибо ведет к поиску решений новых актуальных проблем и дальнейшему научному поиску. Интенсивный процесс урбанизации остро поставил перед наукой необходимость решения проблемы утилизации городских отходов и создания «экологически чистой» транспортной сети, формирования внутренней экосистемы городов, обеспечивающей не только бытовые удобства, но и восполняющей отсутствие прямого контакта человека с природой.

  1. Философские проблемы естественных гуманитарных и технических наук

    Учебное пособие
    Традиция философского осмысления науки нашла в ХХ веке свое логическое оформление в становлении особой философской дисциплины – философии науки. Большой вклад в дело становления данной дисциплины внесли не только крупнейшие отечественные
  2. Образовательная программа 040100 и 040101 Социальная работа Дисциплина Философские вопросы Естественных Гуманитарных Итехнических наук Семестр

    Образовательная программа
    Кезин А.В. Эпистемология на корабле науки: натуралистический вывод или «аргумент отчаяния»? Вестн. Моск. ун-та. - Сер. 7. Философия. - 1998. - №2. - С.
  3. Рабочая программа магистерской подготовки для всех направлений игнд гуманитарный факультет

    Рабочая программа
    Содержание: Современные проблемы науки: особенности современного развития науки и ее роль в развитии современной цивилизации, интеграционные тенденции современного развития науки; виды наук; уровни научного познания; процесс формирования
  4. Естественно-математические и технические науки (2)

    Документ
    Административный регламент Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий по исполнению государственной функции по надзору за выполнением федеральными
  5. Естественно-математические и технические науки (3)

    Документ
    Акопов В.И. Судебная медицина [Текст] : практ. пособие для юристов и врачей / В.И.Акопов; Изд.-торг. корпорация "Дашков и Ко". - 4-е изд., перераб.
  6. М. П. Горчакова-Сибирская (отв ред., Спбгиэу), д-р философ наук, проф (1)

    Документ
    д-р пед. наук, проф. М. П. Горчакова-Сибирская (отв. ред., СПбГИЭУ), д-р философ. наук, проф. Е. А. Гусева (зам. отв. ред. СПбГИЭУ), канд. пед. наук М.
  7. Программа курса Новосибирск

    Программа курса
    Программа курса разработана в соответствии с обязательным минимумом содержания образовательной программы магистра в области философских вопросов естественных, технических и социально—гуманитарных наук.
  8. Рабочая программа «история и методология науки и производства в области электронной техники» для подготовки студентов по магистерской программе «Управление инновациями в электронной технике»

    Рабочая программа
    Целью курса является дальнейшее повышение культурной и философско-методологической подготовки студентов (магистров). Программа ориентирована на тесную связь философии со всем многообразием естественнонаучного, культурологического и инженерного знания.
  9. Учебно-методический комплекс по дисциплине «история и методология юридической науки»: часть I «история и философия науки» Для направления 521400 юриспруденция (магистратура) оксо 030500 (1)

    Учебно-методический комплекс
    основные виды профессиональной деятельности магистра связаны с работой в качестве преподавателя, научного работника, сотрудника правоохранительных органов, консультанта, эксперта.

Другие похожие документы..