Примерная программа математические методы в биологии рекомендуется для направления подготовки

Министерство образования и науки Российской Федерации

ПРИМЕРНАЯ ПРОГРАММА

МАТЕМАТИЧЕСКИЕ МЕТОДЫ В БИОЛОГИИ

Рекомендуется для направления подготовки –

111100 «ЗООТЕХНИЯ»

Квалификация (степень) выпускника

«магистр»

Звание «магистр-инженер»

Москва 2011

1. Цели и задачи освоения дисциплины:

Целью освоения дисциплины является расширение и углубление базовых знаний и навыков по вопросам выбора и применения математических и статистических методов обработки экспериментальных данных в биологии, что позволит выпускнику обладать универсальными и профессиональными компетенциями, способствующими его успешной профессиональной карьере.

Исходя из цели, в процессе изучения дисциплины решаются следующие задачи:

– изучить математическую основу алгоритмов, используемых в биологических исследованиях;

– научиться составлять репрезентативные выборки, адекватно выбирать методы обработки экспериментальных данных;

– овладеть методами обработки результатов эксперимента;

– научиться формулировать и проверять статистические гипотезы.

2. Место дисциплины в структуре магистерской программы

Дисциплина «Математические методы в биологии» относится к базовой части общенаучного цикла и направлена на развитие умений адекватного использования математических и статистических методов при планировании научных исследований, статистической обработки полученных данных, формулировки выводов.

Теоретическая основа дисциплины базируется на знаниях и умениях, полученных магистрами после освоения дисциплин математического и естественнонаучного, профессионального циклов бакалавриата («Информатика», «Генетика и биометрия», «Статистические методы обработки экспериментальных данных», «Методика научных исследований»).

В результате освоения дисциплины «Математические методы в биологии» приобретенные знания позволят выпускникам статистически обработать экспериментальные данные, полученные в результате выполнения научно-исследовательской работы в период прохождения научно-исследовательской практики, и успешно выполнить выпускную квалификационную работу.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины «Математические методы в биологии».

Изучение дисциплины направлено на формирование следующих общекультурных компетенций (ОК):

  • способен совершенствовать и развивать свой интеллектуальный и общекультурный уровень;

  • способен к самостоятельному обучению новым методам исследования, к изменению научного и научно-производственного профиля своей профессиональной деятельности;

  • способен самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности.

Выпускник должен обладать следующими профессиональными компетенциями (ПК):

в научно-исследовательской деятельности:

  • способен формировать решения, основанные на исследованиях проблем, путем интеграции знаний из новых или междисциплинарных областей.

в проектной деятельности:

  • способен к разработке научно обоснованных систем ведения и технологий отрасли.

В результате освоения дисциплины обучающийся должен:

  • знать основы теории вероятностей и математической статистики, классические и современные математические и статистические методы, основные математические модели, используемые в биологии;

  • уметь производить статистическую обработку результатов эксперимента, устанавливать характер и тип распределения объектов с разными параметрами признака, выявлять изменчивость признака, оценивать значимость различия показателей в разных совокупностях, определять величину и направление связи между переменными величинами признаков объектов совокупности, изучать степень влияния того или иного фактора на изменчивость анализируемого признака и прогнозировать показатели-отклики при заданных значениях воздействующих факторов, формулировать и проверять выдвигаемые статистические гипотезы, организовать и провести научный эксперимент, обобщать результаты опыта и формулировать выводы.

  • владеть современными математическими методами, используемыми в биологических исследованиях.

4.Объём учебной дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 3 зачетные единицы.

Вид учебной работы

Всего часов

Семестры

1 семестр

Аудиторные занятия (всего)

32

32

В том числе:

Лекции

12

12

Практические занятия (ПЗ)

20

20

Семинары (С)

Лабораторные работы (ЛР)

Самостоятельная работа (Всего)

76

76

В том числе

Курсовой проект (работа)

Расчётно-графические работы.

Реферат

Вид промежуточной аттестации

зачет

зачет

Общая трудоемкость дисциплины часы

зачётные единицы

\

108

3

108

3

5. Содержание дисциплины

5.1. Содержание разделов дисциплины «Математические методы в биологии»

Раздел 1. Предмет, методы и задачи дисциплины.

Предмет, методы и задачи дисциплины. Первичная обработка экспериментальных данных. Проверка статистических гипотез: о соответствии эмпирического распределения объектов в совокупности теоретически ожидаемому; о равенстве математических ожиданий двух нормальных распределений с известными дисперсиями.

Раздел 2. Корреляционно-регрессионный анализ.

Корреляционно-регрессионный анализ: функциональная, стохастическая, корреляционная зависимости; оценка достоверности коэффициента корреляции; - доверительные интервалы для коэффициентов корреляции; коэффициенты и уравнения регрессии; построение прогноза по уравнению регрессии и оценка его точности и надежности.

Раздел 3. Дисперсионный анализ.

Дисперсионный анализ: анализ компонентов общего разнообразия: факториальное и случайное разнообразие; однофакторный дисперсионный комплекс (фиксированная и случайная модели); критерий достоверности; организация и анализ многофакторного дисперсионного комплекса (фиксированная и случайная модели); коэффициент внутриклассовой корреляции.

Раздел 4. Анализ качественных признаков.

Анализ качественных признаков: вероятность, частоты, частности; малые частоты, -преобразование Фишера; организация и анализ дисперсионных комплексов по признакам с альтернативной изменчивостью.

Раздел 5. Методы непараметрической статистики.

Методы непараметрической статистики:2-критерий, метод Смирнова-Колмогорова, Вилкоксона-Манна-Уитни; критерий Крускала-Уоллиса и др.

Раздел 6. Принципы построения исследования.

Принципы построения исследования: рандомизация; выбор адекватного метода, критерия.

5.2 РАЗДЕЛЫ ДИСЦИПЛИНЫ И МЕЖДИСЦИПЛИНАРНЫЕ СВЯЗИ С ОБЕСПЕЧИВАЕМЫМИ (ПОСЛЕДУЮЩИМИ) ДИСЦИПЛИНАМИ

Наименование обеспечиваемых (последующих) дисциплин

№№ разделов данной дисциплины, необходимых для изучения обеспечиваемых (последующих) дисциплин

1

2

3

4

5

6

Информационные технологии в науке и производстве

+

+

+

+

+

+

Современные проблемы зоотехнии

+

+

+

+

+

+

Практика педагогическая

-

+

-

-

+

-

Практика производственная

-

+

+

-

+

-

Практика научно-исследовательская (научно-производственная)

+

+

+

+

+

+

Научно-исследовательская работа

+

+

+

+

+

+

5.3. РАЗДЕЛЫ ДИСЦИПЛИН И ВИДЫ ЗАНЯТИЙ

Наименование

раздела дисциплин

Лекции

Практ.

занятия

СРС

Всего

Предмет, методы и задачи дисциплины

2

2

18

22

Корреляционно-регрессионный анализ

4

6

22

32

Дисперсионный анализ

2

6

20

28

Анализ качественных признаков

2

2

4

8

Методы непараметрической статистики

2

2

8

12

Принципы построения исследования

2

4

6

Всего

12

20

76

108

6.Практические занятия.

п/п

Тема лабораторного (семинарского) занятия

Кол-во часов

1.

Первичная обработка экспериментальных данных.

2

2.

Корреляционно-регрессионный анализ: функциональная, стохастическая, корреляционная зависимости.

2

3.

Оценка достоверности коэффициента корреляции; доверительные интервалы для коэффициентов корреляции.

2

4.

Коэффициенты и уравнения регрессии; построение прогноза по уравнению регрессии и оценка его точности и надежности.

2

5.

Дисперсионный анализ: анализ компонентов общего разнообразия: факториальное и случайное разнообразие.

2

6.

Однофакторный дисперсионный комплекс (фиксированная и случайная модели); критерий достоверности; организация и анализ многофакторного дисперсионного комплекса (фиксированная и случайная модели); коэффициент внутриклассовой корреляции.

4

7.

Анализ качественных признаков: вероятность, частоты, частности; малые частоты, -преобразование Фишера; организация и анализ дисперсионных комплексов по признакам с альтернативной изменчивостью.

2

8.

Методы непараметрической статистики:2-критерий, метод Смирнова-Колмогорова, Вилкоксона-Манна-Уитни; критерий Крускала-Уоллиса и др.

2

9.

Принципы построения исследования: рандомизация; выбор адекватного метода, критерия.

2

Всего:

20

7.Лабораторный практикум(семинары) не предусмотрен

8. Примерная тематика курсовых работ (не предусмотрено)

9. Учебно-методическое и информационное обеспечение дисциплины.

а) основная литература:

  1. Васильева Л.А. Статистические методы в биологии: Учебное пособие. – Новосибирск: ИЦиГ СО РАН, 2009. – 128 с.

  2. Васильева Л.А. Биологическая статистика: Учебное пособие по курсу лекций “Биометрия”. – Новосибирск: ИЦиГ СО РАН, 2007. – 124 с.

б) дополнительная литература:

  1. Лакин Г.Ф. Биометрия.- М.: Высшая школа, 1990.- 352 с.

  2. Ларцева С. Х., Муксинов М. К., Практикум по генетике. – М.: Агропромиздат, 1985. – 288 с.

  3. Рокицкий П.Ф. Биологическая статистика.- Минск: Высшая школа, 1973.- 319 с.

  4. Плохинский Н.А. Биометрия.- Новосибирск: Наука, СО АН СССР, 1961.- 364 с.

  5. Снедекор Дж.У. Статистические методы в приложении к исследованиям в сельском хозяйстве и биологии.- М.: Сельхозиздат,- 1961.- 503 с.

  6. Урбах В.Ю. Биометрические методы.- М.: Наука, 1964.- 415 с.

  7. Глотов Н.В., Животовский Л.А., Хованов Н.В. и др. Биометрия.- Л.: ЛГУ, 1982.- 463 с.

  8. Ван дер Варден Б.Л. Математическая статистика.- М.: ИЛ,1960.-434 с.

  9. Шеффе Г. Дисперсионный анализ.- М.: Физикоматематическая литература, 1963.- 625 с.

в) программное обеспечение и Интернет-ресурсы:

/ (электронный учебник по статистике — русский перевод электронной помощи к пакету программ Statistica).

8. Материально-техническое обеспечение дисциплины

Специализированная аудитория, оснащенная мультимедийным оборудованием.

Компьютерный класс на 20 рабочих мест.

Программу разработали:

Профессор кафедры ветеринарной генетики

и биотехнологии ФГБОУ ВПО

Новосибирский ГАУ, доктор биологических

наук, доцентМ. Л.Кочнева

Профессор кафедры ветеринарной генетики

и биотехнологии ФГБОУ ВПО

Новосибирский ГАУ, доктор биологических

наук, профессор, заслуженный деятель

науки РФ Л. А.Васильева

Эксперты

Председатель УМС по направлению подготовки 111100 «Зоотехния», зав.кафедрой интенсивных технологий в животноводстве ФГБОУ ВПО РГАУ-МСХА им. К.А.Тимирязева, доктор сельскохозяйственных наук, профессор

Г.Д.Афанасьев

Заместитель председателя УМС по направлению подготовки 111100 «Зоотехния», декан факультета зоотехнологии и агробизнеса ФГБОУ ВПО МГАВМиБ, доктор сельскохозяйственных наук, профессор

А.В.Бакай

  1. Примерная программа наименование дисциплины «Физиология растений» Рекомендуется для направления подготовки (1)

    Примерная программа
    Цель - сформировать знания о сущности физиологических процессов в растениях на всех структурных уровнях их организации, возможности управления их ходом в пространстве и во времени, дать представления об используемых в физиологии растений
  2. Примерная программа наименование дисциплины «Физиология растений» Рекомендуется для направления подготовки (2)

    Примерная программа
    Цель - сформировать знания о сущности физиологических процессов в растениях на всех структурных уровнях их организации, возможности управления их ходом в пространстве и во времени, дать представления об используемых в физиологии растений
  3. Примерная программа наименование дисциплины почвенная микробиология рекомендуется для направления подготовки

    Примерная программа
    1.Цели дисциплины: формирование знаний, умений и навыков по общей, почвенной и сельскохозяйственной микробиологии, понимание роли почвенных микроорганизмов в агроэкологических процессах.
  4. Примерная программа наименование дисциплины микробиология, вирусология рекомендуется для направлений подготовки специальности: 060103 Педиатрия

    Примерная программа
    Цель – освоение студентами теоретических основ и закономерностей взаимодействия микро- и макроорганизма, практических навыков по методам профилактики,
  5. Примерная программа наименование дисциплины история медицины рекомендуется для направления подготовки специальности: 060101 Лечебное дело

    Примерная программа
    показать общие закономерности всемирно–исторического процесса становления и развития врачевания и медицины в различных странах мира с древнейших времен до нашего времени;
  6. Примерная программа наименование дисциплины история медицины рекомендуется для направления подготовки специальности: 060103 Педиатрия

    Примерная программа
    Цель – изучение истории, закономерностей и логики развития врачевания, медицины и медицинской деятельности народов мира на протяжении всей истории человечества.
  7. Примерная программа дисциплины «концепции современного естествознания» Рекомендуется для направления подготовки

    Примерная программа
    - использовать мировоззренческие и методологические естественнонаучные знания для формирования научного стиля мышления профессионального специалиста в сфере таможенной деятельности;
  8. Примерная программа история и философия науки Рекомендуется для направления подготовки 111100 «зоотехния»

    Примерная программа
    Цель изучения дисциплины – формирование у студентов (магистров) представлений о тенденциях исторического развития науки и об ее основных мировоззренческих и методологических проблемах.
  9. Примерная программа наименование дисциплины «Биологическая физика» Рекомендуется для направления подготовки (специальности) (1)

    Примерная программа
    Цель: формирование представлений, понятий, знаний о фундаментальных законах классической и современной физики и биофизики и навыков применения в профессиональной деятельности физических методов измерений и исследований.

Другие похожие документы..