«Исторические основы криптологии»

Вернам предложил электромеханически покоординатно складывать "импульсы" знаков открытого текста с "импульсами" гаммы, предварительно нанесенными на ленту. Сложение проводилось "по модулю 2". Имеется в виду, что если "+" отождествить с 1, а "-" с 0, то сложение определяется двоичной арифметикой:

Например, наложение на знак открытого текста (11001) знака гаммы (01111) давало знак шифртекста (10110). При расшифровании нужно было произвести ту же операцию со знаком шифртекста: (10110)(01111) = (11001).

Вернам сконструировал и устройство для такого сложения. Замечательно то, что процесс шифрования оказывался полностью автоматизированным, в предложенной схеме исключался шифровальщик. Кроме того, оказывались слитыми воедино процессы шифрования-расшифрования и передачи по каналу связи. Тем самым наряду с традиционной схемой предварительного шифрования, когда по каналу передается предварительно зашифрованное сообщение, положено начало линейному шифрованию.

В 1918 г. два комплекта соответствующей аппаратуры были изготовлены и испытаны. Испытания дали положительные результаты. Единственное неудовлетворение специалистов-криптографов было связано с гаммой. Дело в том, что первоначально гамма была нанесена на ленту, склеенную в кольцо. Несмотря на то, что знаки гаммы на ленте выбирались случайно, при зашифровании длинных сообщений гамма регулярно повторялась. Этот недостаток так же отчетливо осознавался, как и для шифра Виженера. Уже тогда хорошо понимали, что повторное использование гаммы недопустимо даже в пределах одного сообщения. Хотя сам Вернам не был математиком, он, может и неосознанно, предлагал однократное использование гаммы. Попытки удлинить гамму приводили к неудобствам в работе с длинным кольцом. Тогда был предложен вариант с двумя лентами, одна из которых шифровала другую, в результате чего получалась гамма, имеющая длину периода, равную произведению длин исходных периодов.

Несмотря на то, что шифр Вернама обладал целым рядом достоинств, он не получил широкого распространения. Трудности, связанные с изготовлением, рассылкой и учетом использованной гаммы, особенно в условиях военной связи, при передаче больших объемов сообщений, стали непреодолимыми. Вспомнили о шифре Вернама лишь накануне второй мировой войны.

Почти половина XX в. была связана с использованием колесных шифраторов. Различные их конструкции были запатентованы примерно в одно и то же время (в период 1917 — 1919 гг.) в разных странах: американцем Э. X. Хеберном, голландцем Х.Ф.Кохом, немцем А. Шербиусом и шведом А. Г. Даммом.

Чертежи своей схемы на основе шифрующего диска Хеберн представил в 1917 г., и уже в следующем году был по строен первый дисковый аппарат, получивший одобрение ВМС США. В 1921 г. Хеберн основал первую в США компанию по производству шифрмашин, которую через десять лет ждал бесславный конец, связанный с финансовыми трудно­стями.

Что представлял собой шифрующий диск? Корпус диска (имевшего размеры хоккейной шайбы) состоял из изоляционного материала, например твердой резины. По окружностям каждой из его сторон были вмонтированы на равном расстоя­нии друг от друга 26 электрических контактов (см. рис. 6). Каждый контакт был соединен внутри корпуса с некоторым контактом на другой стороне. Контакты на входной стороне представляли буквы открытого текста, контакты на выходной стороне — буквы шифртекста.

Диск устанавливался на оси между двумя неподвижными пластинами (розетками), каждая из которых также была изготовлена из изолятора и имела 26 контактов, соответствующих расположению контактов на диске. Контакты входной розетки соединялись с клавиатурой пишущей машинки, печатающей буквы открытого текста. Контакты выходной розетки соеди­нялись с выходным устройством, указывающим буквы шифр-текста, например, с помощью лампочек. При фиксированном угловом положении диска электрические цепи, соединяющие входные и выходные контакты, реализовывали одноалфавит-ную замену. При повороте же диска (на углы ) схема реализовывала многоалфавитную замену (с 26 простыми за­менами).

Рядом с одним диском можно было установить и другие диски. Тем самым схема токопрохождения удлинялась и чис­ло возможных простых замен, реализуемых многодисковой схемой значительно возрастало. При движении к дисков по

простейшей схеме одометра получался период, равный 26 , который можно было сделать астрономическим числом. Подобные шифрмашины обслуживали значительную часть линий связи высшего командования ВМС США, начиная с 20-х годов.

X. Ф. Кох предлагал конструкцию шифрующего диска, в котором роль электричества выполняла пневматика. Речь идет о каналах, соединяющих входные и выходные контакты, по которым может проходить поток воздуха, водная или масляная струя и т. п. Любопытно, что подобные дисковые сис­темы на основе пневматики были реально изготовлены и ис­пользовались на практике.

Принцип шифрующего диска использовали и шифрмашины, разработанные А. Шербиусом. Самой знаменитой из них была "Энигма", которая в двух отношениях отличалась от других дисковых машин. Во-первых, после блока дисков была расположена неподвижная обратимая розетка, контакты которой были попарно соединены друг с другом. Импульс тока, приходивший на этот контакт, заворачивался и вновь проходил через блок дисков в противоположном направлении. Это давало двойное шифрование каждой буквы. Другая особенность "Энигмы" заключалась в неравномерном движении дисков, которое управлялось зубчатыми колесами.

В 1923 г. "Энигма" выставлялась на конгрессе международного почтового союза, однако это не способствовало ее коммерческому успеху: она не раскупалась. За десять лет фирма Шербиуса, производившая "Энигму", не получила прибыли и в 1934 г. была ликвидирована и передала свои ак­тивы другой фирме. После прихода к власти в Германии Гит­лера началось серьезное перевооружение армии, и немецкие специалисты сочли "Энигму" достаточно удобной и надежной шифрмашиной. В довоенный период и во время второй миро­вой войны "Энигма" широко использовалась в германской армии, ВМС и ВВС. Она была портативной (размером с пи­шущую машинку), работала от батареи, имела деревянный футляр. Ее серьезный недостаток состоял в том, что она не печатала шифртекст (а имела лишь загорающиеся лампочки, отвечающие буквам), и для быстрой работы требовались три или даже четыре человека — для чтения и набора на клавиа­туре текста сообщения, диктовки высвечивающихся букв шифртекста и их записи.

С "Энигмой" теснейшим образом связан ход многих событий периода второй мировой войны. Дело в том, что она являлась источником ценнейших сведений для английских спецслужб, читавших переписку "Энигмы" (в рамках операции "Ультра"). Эта информация стоила так дорого, что У. Черчилль пожертвовал городом Ковентри, когда ему стал известен план германской бомбардировки этого английского города. С "Энигмой" связано также появление первой в исто­рии вычислительной машины, сконструированной в 1942 г. для перебора ключевых элементов группой специалистов-криптографов под руководством известного математика А. Тьюринга.

Еще один патент на дисковую машину был выдан А. Г. Дамму в 1919 г. Устройство этой машины было настоль ко сложным, что никогда не было реализовано. Но его автор основал компанию по производству шифрмашин, которая впоследствии стала прибыльной. Среди вкладчиков капитала были Э. Нобель, племянник знаменитого А. Нобеля, и Ц. Хагелин, управляющий нефтедобывающей компанией братьев Нобелей в России и некоторое время бывший гене­ральным консулом Швеции в Санкт-Петербурге. До 1927 г. эта компания не имела больших успехов. Их появление было связано с именем сына Ц. Хагелина — Б. Хагелина, родивше­гося на Кавказе, проучившегося несколько лет в Петербургском университете и получившего позже диплом инженера-механика в Швеции.

В 1925 г. Б. Хагелину удалось модернизировать одну из машин Дамма, снабдив ее клавиатурой и индикаторными лампочками, как у "Энигмы". Это была также колесная машина, работающая, однако, по иному, чем дисковые машины, принципу. Она получила название В-21. Ее работа была осно­вана на матричном коммутаторе, в котором электрически изменялось соединение строк и столбцов для преобразования буквы открытого текста в букву шифртекста. Эти изменения определялись группой ключевых колес, каждое из которых имело по ободу выдвинутые или вдвинутые штифты. Колеса имели различные числа штифтов, так что период многоалфа­витного шифра, реализуемого машиной, был равен произве­дению чисел штифтов на всех колесах. В 1926 г. Б. Хагелин предложил В 21 шведской армии, которая сделала на нее большой заказ.

В 1927 г. Б. Хагелин возглавил фирму, выкупленную семьей Хагелин. Свою следующую машину В-211 он снабдил печатающим устройством, работавшим со скоростью около 200 знаков в минуту. Она была самой портативной печатающей шифрмашиной в 1934 г.

В том же году французский генштаб заказал Б. Хагелину карманную печатающую машину, которая могла бы обслуживаться одним человеком. Через некоторое время такая машина была изготовлена. Она реализовывала шифр гаммирования, причем для выработки гаммы была использована идея сумми­рующего устройства, состоящего из комбинационных линеек, расположенных в цилиндрическом барабане. На линейках рядами были расположены так называемые рейтеры. При повороте барабана на 360° рейтеры, вступая во взаимодейст­вие с другими элементами схемы, могли выдвигать некоторые линейки влево, причем число выдвинутых линеек и определя­ло значение знака гаммы (от 0 до 25) в данный такт шифрова­ния. Во взаимодействие с рейтерами вступали штифты, рас­положенные на колесах блока дисков, составляющего вторую основную часть машины. Размеры и схема движения дисков

обеспечивали период, приблизительно равный. Как расположение рейтеров, так и расположение штифтов могло легко меняться, они являлись ключевыми элементами. Это была машина С-36, ставшая впоследствии знаменитой. По размерам она была меньше телефонного аппарата, весила вместе с футляром около двух с половиной килограммов. Французы сразу же сделали заказ на 5000 машин. Позднее машина была существенно усовершенствована, ею заинтере­совались в США. В 1939 г. она была взята на вооружение ар­мии США. Под военным наименованием М-209 она использо­валась в качестве полевого шифра на протяжении всей вто­рой мировой войны. Всего было произведено около 140 000 таких машин. Позже фирма Хагелин стала производить широ­ко известные машины С-48, С-52, Т-55 и многие другие.

Среди заметных фигур в криптографии первой половины XX в. выделяется У. Фридман, получивший серьезные теоре­тические результаты в криптоанализе и ставший известным благодаря своим заслугам по вскрытию военных шифров Японии и Германии.

У.Фридман родился в 1891 г. в Кишиневе, в семье пере­водчика, работавшего в русском почтовом ведомстве. В 1892 г. его семья эмигрировала в США, где отец стал зани­маться швейными машинами. У.Фридман в 1914 г. Окончил Корнельский университет по специальности генетика. В городе Итака, где проживала семья Фридмана, крупный бизнесмен Д. Фабиан имел собственные лаборатории по акустике, гене­тике и криптографии. Любопытно, что криптографией Д. Фабиан увлекся, пытаясь доказать, что автором пьес У. Шекспира являлся Ф. Бэкон.

В 1915 г. Д. Фабиан нанял на работу в свое поместье Ривербэнк специалиста по генетике. Им стал У. Фридман. Вско­ре он увлекся криптографией и проявил себя в этом деле. Че­рез некоторое время У. Фридман уже возглавлял в Ривербэнкских лабораториях два отдела — генетики и шифров.

Помимо криптоаналитической работы У.Фридман занимался преподаванием в классе, состоявшем из армейских офицеров, присланных в Ривербэнк для изучения криптографии. До 1918 г. им был подготовлен цикл из семи лекций, восьмую он написал после возвращения со службы в качестве дешифровалыцика в американских экспедиционных силах (шла первая мировая война). Известные все вместе как Ривербэнкские публикации, эти работы являются серьезным вкла­дом в теоретическую криптографию.

Наибольший интерес с точки зрения современной криптографии представляют лекции "Методы раскрытия шифров с длинной связной гаммой" и "Индекс совпадения и его приме­нения в криптографии". В первой из них предлагается бесключевой метод чтения при использовании неравноверо­ятной гаммы. Во второй излагается так называемый к-тест, позволяющий выяснить, можно ли подписать друг под другом две (или более) криптограммы (или отрезки криптограмм) так, чтобы буквы в каждой колонке оказались бы зашифрованы одинаковыми знаками гаммы.

Поступив в 1921 г. на службу в войска связи, У. Фридман успешно применял свои методы для вскрытия машинных шифров. Когда была создана служба радиоразведки, У.Фридман стал ее главой и продолжил свои разработки, самой значимой из которых было вскрытие японской пурпурной шифрмашины. В 1929 г. он стал широко известен как один из ведущих криптографов мира, когда "Британская энциклопедия" поместила его статью "О кодах и шифрах". С основными результатами У. Фридмана можно познакомиться в четырехтомнике "Военная криптогра­фия".

Выдающиеся результаты в применении математических методов в криптографии принадлежат Клоду Шеннону. К. Шеннон получил образование по электронике и математике в Мичиганском университете, где и начал проявлять интерес к теории связи и теории шифров. В 1940 г. он получил степень доктора по математике, в течение года обучался в Принстонском институте усовершенствования, после чего был принят на службу в лабораторию компании "Bell Telephone".

К 1944 г. К. Шеннон завершил разработку теории секретной связи. В 1945 г. им был подготовлен секретный доклад "Матема­тическая теория криптографии", который был рассекречен в 1949 г. и издан.

В данной работе излагается теория так называемых секрет­ных систем, служащих фактически математической моделью шифров. Помимо основных алгебраических (или функциональ­ных) свойств шифров, постулируемых в модели, множества со­общений и ключей наделяются соответствующими априорными вероятностными свойствами, что позволяет формализовать мно­гие постановки задач синтеза и анализа шифров. Так, и сегодня при разработке новых классов шифров широко используется принцип Шеннона рассеивания и перемешивания, состоящий в использовании при шифровании многих итераций "рассеиваю­щих" и "перемешивающих" преобразований.

Разработанные К. Шенноном концепции теоретической и практической секретности (или стойкости) позволяют количе­ственно оценивать криптографические качества шифров и пы­таться строить в некотором смысле идеальные или совершенные шифры. Моделируется также и язык открытых сообщений. А именно, предлагается рассматривать язык как вероятностный процесс, который создает дискретную последовательность сим­волов в соответствии с некоторой вероятностной схемой.

  1. Основы информатики и программирования

    Пояснительная записка
    Е.Н. Живицкая, доцент кафедры экономической информатики Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники»,
  2. Лекция 1 (10)

    Лекция
    Кафедра теории вероятностей и математической статистики факультета физико-математических и естественных наук Российского университета дружбы народов.
  3. Основная образовательная программа высшего профессионального образования Направление подготовки (171)

    Основная образовательная программа
    способностью осознавать необходимость соблюдения Конституции Российской Федерации, прав и обязанностей гражданина своей страны, гражданского долга и проявления патриотизма (ОК-1);
  4. Криптономикон (Cryptonomikon)

    Документ
    Крипта. “Реальная” столица Сети. Рай хакеров. Кошмар корпораций и банков. “Враг номер один” всех мировых правительств. В сети нет ни стран, ни национальностей.
  5. Нил Стивенсон (2)

    Документ
    Существует удивительно близкая параллель между задачами физика и криптографа. Система, по которой зашифровано сообщение, соответствует законам Вселенной, перехваченные сообщения – имеющимся наблюдениям, ключи дня или сообщения – фундаментальным
  6. История криптографии ”

    Документ
    Криптография в прошлом использовалась лишь в военных целях. Однако сейчас, по мере образования информационного общества, криптография становится одним из основных инструментов, обеспечивающих конфиденциальность, доверие, авторизацию,
  7. Конспект лекций для студентов III курса фпми по специальностям “Прикладная математика и информатика” (010500)

    План-конспект
    Конспект лекций посвящен основам теории информации и криптографии и охватывает широкий круг вопросов, позволяющих студента получить базовые знания по курсу.
  8. Гуманитарный, социальный, экономический цикл

    Документ
    К исходным требованиям, необходимым для изучения дисциплины «Философия», относятся знания, умения и виды деятельности, сформированные в процессе изучения учебных предметов «История» и «Обществознание» основной образовательной программы
  9. Введение в специальность (6)

    Программа
    В.А. Чердынцев, заведующий кафедрой радиотехнических устройств Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники»,

Другие похожие документы..