Лекция 1 1

Лекция 1 3

ВВЕДЕНИЕ 3

1. ФОРМАЛЬНАЯ КИНЕТИКА 5

1.1. ОБЩИЕ ПОНЯТИЯ 5

1.2. СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ 5

1.3. ОБРАТИМЫЕ И НЕОБРАТИМЫЕ РЕАКЦИИ. 7

Лекция 2 9

КИНЕТИЧЕСКАЯ КЛАССИФИКАЦИЯ ХИМИЧЕСКИХ РЕАКЦИЙ 10

ПОРЯДОК РЕАКЦИИ 11

РЕАКЦИИ 1ГО ПОРЯДКА 13

Гомогенные реакции 13

Реакции второго порядка 14

МЕТОДЫ ОПРЕДЕЛЕНИЯ ПОРЯДКА РЕАКЦИИ 15

Лекция 3 16

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ 16

ЭНЕРГИЯ АКТИВАЦИИ 17

Методы определения энергии активации: 20

ЛЕКЦИЯ 4 22

ТЕОРИЯ СОУДАРЕНИЙ 22

ТЕОРИЯ АКТИВИРОВАННОГО КОМПЛЕКСА. 25

КИНЕТИКА ГЕТЕРОГЕННЫХ ХИМИЧЕСКИХ РЕАКЦИЙ 27

ПОВЕРХНОСТЬ РАЗДЕЛА 29

ЛЕКЦИЯ 5 30

ПРИРОДА ПОВЕРХНОСТИ РАЗДЕЛА 30

ПЛОЩАДЬ ПОВЕРХНОСТИ РАЗДЕЛА 32

ГЕОМЕТРИЯ ПОВЕРХНОСТИ РАЗДЕЛА 32

ЛЕКЦИЯ 6 36

ДИФФУЗИОННО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ГЕТЕРОГЕННОГО РЕАГИРОВАНИЯ 36

ЛЕКЦИЯ 7. 41

ЛЕКЦИЯ 8 47

Диффузия газа через пограничную пленку, как лимитирующая стадия процесса. 49

ЛЕКЦИЯ 9 52

Кинетика гетерогенных химических реакций, сопровождающихся образованием твердого продукта реакции. 60

ЛЕКЦИЯ 11. 66

Кинетические модели топохимических реакций. 71

ЛЕКЦИЯ 12 76

КИНЕТИЧЕСКИЕ УРАВНЕНИЯ, ВЫВЕДЕННЫЕ НА ОСНОВАНИИ ПРЕДСТАВЛЕНИЙ О ЦЕПНОМ МЕХАНИЗМЕ РАЗВИТИЯ РЕАКЦИЙ 76

РЕАКЦИИ ГАЗ - ТВЕРДОЕ 78

АДСОРБЦИОННО-ХИМИЧЕСКИЕ СТАДИИ ГЕТЕРОГЕННЫХ ХИМИЧЕСКИХ РЕАКЦИЙ 78

ЛЕКЦИЯ 13 81

Хемосорбция 81

Теория адсорбции ЛЭнгмюра. 82

ЛЕКЦИЯ 14 87

Методы исследования кинетики гетерогенных реакций газ – твердое. 87

Характеристика методов и их аппаратурного оформления. 88

ЛЕКЦИЯ 15 91

Техника экспериментальных термогравиметрических исследований кинетики реакций твердое - газ: 91

НЕИЗОТЕРМИЧЕСКАЯ КИНЕТИКА 94

ЛЕКЦИЯ 16 99

Гетерогенные процессы в системе «газ –жидкость» (газожидкостные реакции) 99

Описание массопередачи между газом и жидкостью. 100

Лекция 1

ВВЕДЕНИЕ

Производство материалов более высокого качества и максимальной чистоты и как следствие улучшение устаревшей технологии жизненно необходимо из-за конкуренции со стороны производителей. Однако, применяя только технологические средства, невозможно решить возникающие проблемы, связанные с повышением качества продукции. Постоянно ощущается необходимость все более совершенными способами овладевать различными физическими и химическими процессами, которые играют решающую роль на различных стадиях производства.

Известно, что значительная доля усилий, затрачиваемая сейчас на химические исследования, направлена на синтез новых соединений и поиск новых реакций. Между тем все больший размах приобретает изучение непосредственно самого химического процесса - перераспределения связей между реагирующими молекулами. Это обусловлено тем, что возможности управления химическим процессом возникают лишь в том случае, когда найдены и проанализированы все параметры, определяющие химический процесс.

Описательная химия, термодинамика, кинетика, теоретическая химия и многие другие физические дисциплины пытаются различными способами проникнуть в механизм химического процесса. Среди них кинетика, вооруженная современными физическими средствами, занимает особое положение. Дело в том, что она ставит своей задачей изучение направления химического процесса и его скорости в зависимости от различных факторов.

Как известно, химическое превращение обычно состоит из совокупности отдельных процессов. Первоначально необходимо проанализировать отдельные случаи и только потом переходить к более сложным совокупным процессам. Именно таким образом, проведя тщательное экспериментальное исследование определенного числа элементарных реакций, Макс Боденштейн в начале века заложил основы кинетики гомогенных процессов.

Осуществить подобное в области кинетики гетерогенных процессов – задача более сложная и экспериментально менее разрешимая, что фактически и определило ее замедленное развитие.

В гомогенной среде аналитические концентрации реагентов сравнительно легко измеримы и достаточно просто связаны с концентрациями реакционно-способных молекул. Скорость превращения которых определяет кинетику всего процесса. Иначе обстоит дело в гетерогенных реакциях, где концентрации в жидкой или газообразной фазах связаны законами равновесия с концентрациями адсорбированных молекул, в которых роль твердого вещества до сих пор выясняется. Хотя механизм процессов в адсорбированной фазе не установлен, формальную кинетику процесса можно определить в том случае, если площадь поверхности твердой фазы и ее природа не изменяются.

Когда твердое вещество само участвует в реакции, возникают трудности другого порядка - кинетические измерения дают лишь общую картину процесса, в которой не учитываются такие детали, как локализация реакции, а также характер процессов в твердом веществе и механизм всего процесса.

Вначале результаты исследований гетерогенных реакций пытались объяснить с помощью понятий, взятых из области кинетики гомогенных реакций. В действительности гетерогенная реакция сложнее. Из наблюдений по образованию новой фазы при кристаллизации или конденсации, также как и по разложению солей, можно представить себе, что даже в простом случае превращение твердого вещества осуществляется в несколько стадий, которые связаны с образованием и ростом зародышей на поверхности твердого вещества. В результате создается реакционная поверхность раздела, постепенно углубляющаяся в образец.

Отдельные этапы химической реакции имеют различный характер, поэтому возможны различные варианты кинетического описания реакционной схемы. Для одной и той же реакционной системы скорость процесса зависит от структуры и текстуры твердого вещества, наличия дефектов в кристаллической решетке и содержания различных примесей. Повышение температуры приводит к более энергичной реакции в гетерогенной системе, следовательно, элементарные стадии всего процесса нуждаются в энергии активации, как и гомогенные реакции.

Кинетика гетерогенных процессов играет важную роль в самых разнообразных областях, таких, как производство цементов, высокоактивных поглотителей, пигментов и смесей оксидов для электронных устройств; изготовление порошкообразных ингредиентов; создание сложных и высокопрочных материалов; селективное выщелачивание, обжиг, сгорание твердых веществ в топках и ракетах; порошковая металлургия; изготовление пористой и плотной керамики; очистка газов с помощью адсорбции или хемосорбции на твердых веществах и т.д.

1. ФОРМАЛЬНАЯ КИНЕТИКА

1.1. ОБЩИЕ ПОНЯТИЯ

Химическая кинетика - наука, изучающая закономерности протекания химических процессов во времени. На основании основного постулата химической кинетики, раздел химической кинетики, в котором рассматривается метод нахождения зависимости скорости химической реакции от концентрации реагирующих веществ, получил название формальной кинетики.

1.2. СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ

Пусть протекает реакция, уравнение которой в общем, виде можно записать следующим образом:

lL + mM + .....= qQ + rR +.... (1.1)

где l; m и q; r - стехиометрические коэффициенты исходных и конечных веществ; L; M и Q; R - исходные и конечные вещества.

Под скоростью химической реакции подразумевается какое количество молекул данного вида реагирует в единицу времени.

Скорости различных реакций можно сравнивать, если относить скорость реакции к единице объема. Поэтому скорость реакции определяют числом молекул или молей данного вещества, реагирующих в единицу времени в единице объема.

Для определения скорости химической реакции достаточно знать изменение во времени количество только одного из веществ - участников реакции (исходного или конечного), так как изменение количества всех остальных веществ можно найти на основании стехиометрии из уравнения (1.1).

По скорости, гетерогенные реакции можно разделить на следующие категории:

  1. Реакции с постоянной скоростью. Это имеет место лишь в особом случае гетерогенной реакции между твердым веществом и жидкостью при условии, что а) концентрация реагента постоянна; б) поверхность твердого вещества не изменяется в течение процесса.

  2. Реакции, скорость которых уменьшается со временем. Это может происходить за счет: а) снижения концентрации одного из реагентов; б) уменьшения площади поверхности одного из реагентов; в) образования защитной пленки продуктов реакции на поверхности твердого реагента.

  3. Реакции со скоростью, увеличивающейся с течением времени. Такие процессы называют автокаталитическими; продукт реакции в последствие реагирует с исходным веществом.

Скорости изменяются от бесконечно малых до бесконечно больших. Поэтому очевидно, что необходимо знание факторов, воздействующих на протекание реакции до конца за минимальное время. Следует учитывать следующие четыре параметра:

  1. Влияние концентрации реагентов. Если одним из реагентов является газ, то необходимо знать влияние давления, чтобы эффективно использовать сосуды высокого давления.

  2. Влияние температуры. Некоторые гетерогенные реакции значительно ускоряются с повышением температуры.

  3. Влияние перемешивания или скорости потока газа.

  4. Влияние размеров частиц.

Еще в самом начале исследований химической кинетики было сделано предположение, что реагируют только те молекулы, которые сталкиваются. Как известно, число столкновений прямо пропорционально числу молекул, поэтому скорость реакции должна быть пропорциональна концентрациям реагирующих веществ, т.е. в общем, случае

(1.2)

где - скорость химической реакции; k1 - константа скорости химической реакции ; cLи cM - концентрации реагирующих веществ; l и m - стехиометрические коэффициенты веществ.

Полученное выражение иногда называют основным постулатом химической кинетики.

Физический смысл k1 можно найти, если принять, что все концентрации равны единице, т.е. cL= cM = ...... = 1.

При этом условии

 = k1 (1.3)

Таким образом, константа скорости химической реакции есть скорость этой реакции при условии, что концентрации реагирующих веществ постоянны и равны единице. Константу скорости иногда называютудельной скоростью химической реакции.

Из выражения (2) следует, что скорость реакции является функцией времени, так как с течением времени изменяются концентрации реагирующих веществ.

1.3. ОБРАТИМЫЕ И НЕОБРАТИМЫЕ РЕАКЦИИ.

Обратимыми в химической кинетике называют такие реакции, которые одновременно и независимо протекают в двух направлениях - прямом и обратном, но с различными скоростями. Для обратимых реакций характерно, что через некоторое время после их начала скорости прямой и обратной реакций становятся равными и наступает состояние химического равновесия.

Все химические реакции обратимы, но при определенных условиях некоторые из них могут протекать только в одном направлении до практически полного исчезновения исходных продуктов. Такие реакции называют необратимыми. Обычно необратимыми бывают реакции, в которых хотя бы один продукт реакции выводится из области реакции (в случае реакции в растворах - выпадает в осадок или выделяется в виде газа), или реакции, которые сопровождаются большим положительным тепловым эффектом. В случае ионных реакций, реакция является практически необратимой, если в результате нее образуется очень малорастворимое или малодиссоциированное вещество.

Рассмотренное здесь понятие обратимости реакции не совпадает с понятием термодинамической обратимости. Обратимая в кинетическом смысле реакция в термодинамическом смысле может протекать необратимо. Для того чтобы реакцию можно было назвать обратимой в термодинамическом смысле, скорость прямого процесса должна бесконечно мало отличаться от скорости обратного процесса и, следовательно, процесс в целом должен протекать бесконечно медленно.

В идеальных газовых смесях и в идеальных жидких растворах скорости простых (одностадийных) реакций подчиняются закону действующих масс. Скорость химической реакции (1.1) описывается уравнением (1.2), а в случае прямой реакции может быть, представлено в виде:

(1.4)

где - константа скорости прямой реакции.

Подобно этому, скорость обратной реакции:

(1.5)

При равновесии , следовательно:



Это уравнение выражает закон действующих масс для химического равновесияв идеальных системах; К - к о н с т а н т а р а в н о в е с и я.

Константа реакции позволяет найти равновесный состав реакционной смеси при данных условиях.

Закон действующих масс для скоростей реакций можно пояснить следующим образом.

Чтобы произошел акт реакции, необходимо столкновение молекул исходных веществ, т.е. молекулы должны сблизиться друг с другом на расстояние порядка атомных размеров. Вероятность найти в некотором малом объеме в данный момент l молекул вещества L , m молекул вещества M и т.д. пропорциональна ..... , следовательно, число столкновений в единице объема за единицу времени пропорционально этой величине; отсюда вытекает уравнение (1.4).

Известны случаи, когда каждое столкновение приводит к реакции. В других случаях, лишь малая доля столкновений приводит к реакции, потому что реагировать способны лишь молекулы с энергией много большей, чем средняя энергия при данной температуре. Это не влияет на применимость уравнения (1.4), т.к. число столкновений, приводящих к реакции, пропорционально общему числу столкновений.

  1. Лекція №1 3

    Лекція
    Розвиток технічних систем (радіо техніки) пов’язані з постійним кількісним ускладненням радіоелектронних засобів. Причому ускладнення відбувається з інтенсивністю 2 рази за 3 роки.
  2. Лекция №1 (4)

    Лекция
    Фармакология – (греч. Pharmacon – лекарство) наука, изучающая взаимодействие химических соединений биологического и небиологического происхождения с организмом человека и животных.
  3. Лекция №1 (32)

    Лекция
    Электромагнитные процессы, протекающие в электротехнических устройствах, как правило, достаточно сложны. Однако во многих случаях, их основные характеристики можно описать с помощью таких интегральных понятий, как: напряжение, ток,
  4. Лекция №1 (57)

    Лекция
    Лечебно-профилактический эффект любого ЛС проявляется за счет усиления или торможения физиологических или биохимических процессов в организме. Это достигается следующим образом:
  5. Лекция n 1 (1)

    Лекция
    Среди многочисленных сложных проблем, которые изучает современное языкознание, важное место занимает изучение лингвистических аспектов межъязыковой речевой деятельности, которую называют «переводом» или «переводческой деятельно­стью».
  6. Лекция n 1 (2)

    Лекция
    Перевод - это несомненно очень древний вид человеческой деятельности. Как только в истории человечества образовались группы людей, языки которых отличались друг от друга, поя­вились и «билингвы», помогавшие общению между «разно­язычными» коллективами.
  7. Лекция №1 9

    Лекция
    Особенностью спутниковых систем связи является необходимость работать в условиях сравнительно низкого отношения сигнал/шум, вызванного несколькими факторами: 110
  8. Лекция 2 (7)

    Лекция
    Лексикология как раздел науки о языке. Синхрония и диахрония в лексикологии. Теоретическое и практическое значение лексикологии и ее связь с другими лингвистическими дисциплинами: фонетикой, морфологией, грамматикой, стилистикой, историей
  9. Лекция 2 (10)

    Лекция
    Васту-шастра основана на гармонии мироздания, которая выражается в лунном, солнечном и временном воздействии на сознание и физиологию человека. По этой причине эта наука тесным образом связана с ведической астрологией и аюрведой.

Другие похожие документы..